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Abstract-Based on refined analysis, a theory of laminated composite shells with higher-order
transverse shear deformation is presented, The continuity conditions ofdisplacements and transverse
shear stresses at layer interfaces and the conditions of zero transverse shear stresses on the surfaces
of the shells are introduced to improve and simplify the displacement field, The number of the
displacement unknowns and the order of the equilibrium equations are the same as in the first-order
shear deformation theory, but the present theory can predict continuous parabolic transverse shear
stresses, The closed-form solutions of simply-supported cross-ply shells are obtained and compared
with the elasticity solutions and other theories' solutions, For both shallow and deep shells, the
present solutions of displacements and in-plane stresses are very close to the elasticity solutions,
Copyright © 1997 Elsevier Science Ltd,

I. INTRODUCTION

The early researches of laminated composite shells were based on the classical shell theory
(CPT) and the first order shear deformation theory (FSDT) which are suited to homo­
geneous shells, Because of the low ratios of the transverse shear modulus to the in­
plane modulus in composite laminates, the effects of transverse shear deformation on the
responses of laminated composite shells must be considered fully. In the past three decades,
various theories for laminated shells have been presented. These theories can be divided to
two kinds, i.e., the piecewise approximation theories and the global approximation theories.
Theories of the first kind, because the order of the governing equations varies with the
number of layers, their application is limited.

In the theories of the second kind, the displacements are expanded as functions of the
thickness coordinate. The order of governing equations is independent of the number of
layers. Some first-order and high-order shear deformation shell theories were proposed by
Dong and Tso (1972), Reddy and Liu (1985), Librescu et al. (1989), Dennis and Palazotto
(1991), etc. But the continuity conditions of transverse shear stresses at layer interfaces in
these theories are not fulfilled and the continuous transverse shear stresses can be obtained
only by integrating the three-dimensional equilibrium equations. Although some authors
thought that their global theories did not need shear correction factors, shear correction
factors are often necessary (Huang, 1994; Noor and Peter, 1989; etc.). To overcome this
drawback, Di Sciuva (1987) propsed a simplified discrete-layer theory with five unknowns
which ensure the continuity of transverse shear stresses at layer interfaces. But in this
theory, the transverse shear stresses are uniform across the thickness of the shell, therefore
the compatibility conditions on the external bounding surfaces are not fulfilled. Soldatos
and Timarci (1993) gave unified formulation of 'laminated composite, shear deformation,
five-degrees-of-freedom cylindrical shell theory'. In their theory, 'shear deformation shape
function' may be chosen and open possibilities are left for posterior specification of par­
ticular shear deformable shell theories. Recently ling and Tzeng (1993) and He (1994) have
presented the refined shell theories (He, five independent displacement unknowns; ling and
Tzeng, seven) in which the continuity conditions of interlaminar transverse shear stresses
and the compatibility conditions on the external bounding surfaces are fulfilled, but the
form of the displacement fields is quite complicated. Moreover, it should be noted that
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many of the theories were presented for laminated shallow shells. The Donnell simplification
for shallow shells (omitting the terms u/R, and v/R2 in the transverse shear strains) is
adopted in these theories. Consequently, considerable errors are yielded for deep shells
(R/I < 3).

Shu (1994a) presented a simple higher-order theory for laminated composite plates.
The present study is to present a theory oflaminated shells (a global approximation theory).
The new contribution in the research area of the paper is based on the following points:
(1) transverse shear stresses are considered continuous at layer interfaces. By ensuring the
continuity of interlaminar transverse shear stresses and the zero transverse shear strains on
the surface of shells, the number of the displacement parameters is reduced to five which is
the same as in FSDT. The influence of the materials and plyup patterns of shells on the
displacement field is considered. (2) The theory is presented for general shells. (3) Some
interesting results are presented for cross-ply laminated shells of cylindrical and spherical
shape. The present theory can predict very accurate responses for both shallow and deep
shells. Moreover, it is relatively simple for solution.

2. REFINED DISPLACEMENT FIELD

Consider a laminated shell composed of N orthotropic layers with uniform thickness.
Let (~" ~2' ~3) denote the orthogonal curvilinear coordinates such that ~I- and ~2-curves are
lines of curvature on midsurface ~3 = 0, and ~rcurves (also referred to as z) are straight
lines perpendicular to the midsurface. z = h/2 and z = - h/2 are the top surface and bottom
surface of the shell. Zj (j = 0, 1... N) is the Z coordinate ofeach layer interface. The reference
surface n coincides with the midsurface. The radii of curvatures along ~ 1 and ~2 curves are
R\ and R2, respectively. The Lame parameters of the midsurface are denoted as Al and A 2•

The strain-displacement relations of shells are defined

(;1 = u.dA, +vA1,2/A I A 2 +w/R\

(;2 = V,2/A2 +uA 2,,/A j A2 +w/R2

(1)

where a comma denotes differentiation with respect to the subscript. Uo and Vo are the
corresponding midsurface displacements in the ~ I and ~2 directions. The Love first-order
geometric approximation (neglecting ~3/R, and ~3/R2) is invoked. The Donnell sim­
plification of shallow shells can be accomplished by omitting the underlined terms (uo/R,
and vO/R2) in (;4 and (;5' However, the underlined terms are necessary for deep shells.

The stress-strain relations for the ith layer are

{a} = [a, a2a6]T = [Qu]{(;}

{'t'} = [a5 a4F = [Q2J{Y} (2)

where {a} and {'t'} are in-plane stresses and transverse shear stresses, respectively. {(;} and
{y} are in-plane strains and transverse shear strains, respectively. [Qu] and [Q2J are the
plane-stress-reduced elastic constant matrix and transverse shear elastic constant matrix
for the ith layer, respectively.

As is suggested by Reddy and Liu (1985) and Librescu et al. (1989), the in-plane
displacements {u} are expressed as cubic functions of the z coordinate and the deflection w
is independent of the z coordinate. However, in order to ensure the continuity of transverse
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shear stresses at layer interfaces, {uo} and {O} (global unknowns) suggested by the above
authors are replaced by {uJ and {OJ (unknowns of the ith layer) as follows:

Relative transverse shear strains in the ith layer are

{yJ = {OJ +2z{cp} +3z2{ljJ} + {w'} - {ko}.

In eqns (3) and (4),

{u} = [U(~t'~2,Z)V(~t'~2'ZW

{uJ = [Ui(~1'~2)Vi(~t'~2W

{OJ = [0\i(~]'~2)02i(~]'~2W

{cp} = [cpt (~], ~2) CP2(~]' ~2W

{ljJ} = [ljJI(~t'~2)ljJ2(~t'~2W

{w'} = [w(~t'~2).t/At W(~t'~2).2/A2F

{ko} = [uo/R 1 vo/R2].

(4)

(5)

It is seen that the number of displacement functions {uJ and {Oi} varies with the
number of layers. By imposing the following three conditions, the functions {u i }, {OJ, {cp}
and {ljJ} will be determined in terms of global displacement unknown and the displacement
unknowns will be reduced to five.

1. The transverse shear stresses {'t'} vanish on the top and bottom surfaces of the shell.
So {cp} and {ljJ} are determined

{cp} = ({Od-{ON})/2h

{ljJ} = -2({Ot}+{ON}+2{w'}-2{ko})/3h2. (6)

2. The transverse shear stresses {'t'} at each layer interface must be continued. At the
interface (z = Zi-t) between i-I layer and i layer

(7)

3. The in-plane displacements {u} at each layer interface must be continued.

Satisfying the above conditions, the displacement field (2) becomes

{u} = {uo} + [R(z)], {O} + ([R(z)); - z[I]) ({w'} - {ko})

(8)

(9)

where {uo} denotes the corresponding midsurface displacements. {O} = {Od. [I] is the unit
matrix. When let [R(z»); = [0], z[I] and (z-4z3/3h2)[I], eqn (9) will have an identical form to
those shown in the classical theory, the first-order shear deformation theory and higher­
order theory (Reddy and Liu, 1985; Huang, 1994), respectively. For angle-ply shells, R 12(z)
and R2t (z) in [R(z)] do not equal zero. There exists a coupling between the displacement u
in the ~ I direction and the displacement unknowns Vo and O2 in the ~2 direction, and between
the displacement v in ~2 direction and the displacement unknowns Uo and 01 in the ~ I

direction. For cross-ply shells, R 12(z) and R21 (z) equal zero and the in-plane displacements
have a simpler form
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u = UO +R 11 (Z)8 1 +(RII(Z)-Z)(w,I/AI-Uo/RI)

V = VO+R22(Z)82+(R22(Z)-Z)(W,2/A2-Vo/R2)' (10)

[R(z)L is a coefficient matrix related to materials and plyup pattern:

and

[R3l = 4[h[CdN+4[C2lNl-I[C2lN/h

[R4 l = -4[h[CdN+4[C2lNl- I[CdN/3h

[R2L = 2([Q2il -I [CIL -Zi[I])[R3l+ 3(2[Q2;] -I [C2li -zf[I])[R4l
i k

[Rdi = L Zj_1 ([R2L- I - [R2L> - L Zj_1 ([R2L-I - [R2lJ
j~2 j~2

i

[Cdi= L[Q2j](Zj-zj-d
j~ I

i

[C2L= L[Q2j](Z;-Z;-I)/2
j-I

(II)

(12)

where k is the ordinal number of the layer in which the midsurface is located.
It can be seen that the displacement field of the present theory contains five unknowns

(uo, Vo, w, 8], ( 2) which are similar to those in the first-order shear deformation theory and
some higher-order theories. However, the in-plane displacements in the present theory are
cubic functions of thickness coordinate and fulfill the conditions which are not totally
fulfilled in other theories.

3. EQUILIBRIUM EQUATIONS

To simplify analysis, let dX I = Ald~l; dX2 = A2d~2' For cylindrical shells, the sub­
stitution is exact. For other shells (e.g., spherical shells), it is approximate, but very accurate
when R/a > I (see numerical example). Therefore the strain components associated with
eqn (9) are

where

{e} = {eo} +[T1(z)t{K} + [T2(z)t{8'}

{y} = [R(z)L({8}+{w'}-{ko})

{eo} = [UO,I +w/R I vo,2+ w/R2 uo,2+ vo,dT

{K} = [-W,II +uo,I/R 1 -W.12+UO,2/RI -w,l2+vO,tlR2 -W,22+VO,2/R2lT

{8'} = [81,181,282,182,2lT

(13)

0 -R12i z-:",]-R21i 0

Z-R1li Z-R22i -R12i
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[R,,; 0 R I2i

R~ul[T2(z)t = 0 R2U 0 (14)

R 21i R 1li R22i R'2i

Here R'li' R 12i, R2Ii and R 22i are the elements in matrix [R(z)],.
The principle of virtual work for the present case is

i (In [{uVc5{e} + {rVc5{'}'}] dX I dX2 )dZ- In (q+ +q~) c5wdx l dX2

= In[{NVc5{eo} + {MV c5{K} + {SV c5{9'} + {VV (c5{O} +c5{w'} -c5{ko})

The equilibrium equations and boundary conditions are obtained from the principle
of virtual work. The equilibrium equations are

NI.\ +N'2,2 +MI.\/R, +M12,2/Rj + Vt/R, = 0

N'2" +N2,2 +M21 .I /R2+M2,2/R2 + V2/R2 = 0

MI,'I + (M12 +M2 ,),12 +M2,22 + VI.\ + V2,2 -N,/R, -N2/R2+q+ +q- = 0

SI.\ +SI2,2 - VI = 0

S21,,+S2,2-V2 =0, (16)

The equivalent surface tractions q+ and q- in eqn (16) are related with prescribed
tractions p+ on the surface z = h/2 and traction p- on the other surface z = -h/2 as
follows:

q+ = p+ (1 +0,5h/Rd(1 +O.5h/R2)

q- =p-(1-0.5h/R[)(1-0.5h/R2)·

The stress resultants can be expressed in terms of strain components

(17)

{N} = [N,N2N 12 ]T = i {u} dz = [A]{eo} + [B]{K} + [FJ{9'}

{M} = [M,M12 M 2I M 2]T = L[T I (zW {u} dz = [BF {eo} + [D]{K} + [E]{9'}

{S} = [SISI2S2IS2]T = L[T2(ZW{CT}dZ = [FJT{eo} + [E]T{K} + [G]{O'}

{V} = [v, v2F = i [R(z)]~{r} dz = [C]({O} + {w'} - {ko}). (18)

Stiffnesses [A], [B], etc. are defined as
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([A](B](FJ) = i [Qd(1 [Td[T2Ddz

([D][E]) = i[T] ]T[Qd([Td[T2Ddz

[G] = i[T2V[Qd[T2 ] dz

[C] = i[R(Z)g[Q2][R(zHz dz. (19)

The corresponding boundary conditions along edge Xl = constant are of the form :

Uo or N]+MJiR I

Vo or N 12 +M2I /R2

W or MI.] +MI2 ,2 + VI

W,I or M]

01 or SI

O2 or S21' (20)

The boundary conditions along edge X2 = constant are analogous to the above expressions.
If the underlined terms in the equilibrium equations and boundary conditions are

omitted, the form of the equilibrium equations and boundary conditions will be similar to
the corresponding shallow shell theory,

4. THE CLOSED-FORM SOLUTIONS FOR CROSS-PLY SHELLS

Here we consider the closed-form solutions of simply supported, cross-ply rectangular
(a x b) shells having both radii of principal curvature constants. For cross-ply shells, the
following stiffnesses are identically zero

A I3 =A23 =0

B I2 = Bn = B I3 = B23 = B31 = B34 = °
F I2 = Fn = F]3 = F23 = F3] = F34 = °
£12 = £13 = £21 = £24 = £31 = £34 = £42 = £43 = °
D I2 =D]3 =D24 =D34 =0

GI2 = G13 = G24 = G34 = 0.

Moreover, for symmetric laminated shells, [B] = [0] and [FJ = [0].
The simply supported boundary conditions are assumed to be of the form

Uo(X\> 0) = uo(xl,b) = VO(0,X2) = vO(a,x2) = 0

W(X\> 0) = w(x],b) = W(0,X2) = w(a,x2) = °
o](xl,O) = 01 (X\> b) = o2(0,X2) = o2(a,x2) = °

N2(x l ,0) = N2(x\> b) = N I(0,X2) = N I(a,x2) = °
M 2(x l ,0) = M 2(x\> b) = M I(0,X2) = M I(a,x2) = 0

S2(X I ,0) = S2(x b b) = SI(0,X2) = SI(a,x2) = 0.

(21)

(22)
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We assume the following Navier solution form that satisfies the simply supported
boundary conditions

00 00

Uo = L: L: Umn cos ax I sin fh2
m=l n=l

00 00

Vo = L: L Vmn sin ax I cos f3x 2
m=l n= L

00 00

W = L: L: Wmn sin ax I sin f3 X 2
m=I n= I

00 00

(}I = L: L: (}lmnCOSaXI sinf3x2
m=l n=l

00 00

(}2 = L L: (}2mn sin aX I cos f3x2
m=l n=l

where a = mn/a and f3 = nn/b.
The transverse loads can be expanded in the double-Fourier series

00 00

(q+ q-) = L L: (q';;nq;;;n) sin ax] sin f3X 2'
m::i=l n=l

(23)

(24)

Substituting eqns (23) and (24) into equilibrium eqns (16), collecting the coefficients,
we obtain

[Kij]{X} = {Q} i,j= 1, ... ,5

where

[Kij] is the coefficient matrix and is listed in the Appendix.

(25)

(26)

5. NUMERICAL EXAMPLES AND DISCUSSIONS

In order to assess the accuracy of the present theory and determine its application
range, we present numerical results for simply-supported cross-ply rectangular shells. The
solutions of the present theory are compared with the elasticity solutions and the solutions
of other higher-order shell theories. Cylindrical and spherical shells are examined:

(a) cylindrical shells: b/a = 3. Deep shell, RI/a = I; shallow shell, RI/a = 4;
(b) spherical shells: b/a = l. Deep shell, R/a = 1,2; shallow shell, R/a = 5.

The lamination scheme are of symmetric [0/90 ... ls (N = 3,5) and antisymmetric
[0/90/0/90 ... ] (N = 4) type.

In all problems, the following lamina material properties and the transverse loads are
used:

Ell/En = 25 GniEn = GdEn = 0.5 G23 /En = 0.2

VJ2 = V 13 = V23 = 0.25 p- = O. p+ = P sin(nxda) sin(nx2/b).

In all tables, the nondimensionalized deflections and stresses are used:
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Table I. Nondimensional deflections and stresses of laminated cylindrical deep shells (R,la = 1)

N alh Theory IV u,_ 0'1 + <1 2 X 10 <16 X 10 <15 <1. x 10

Elast. 2.716 -1.293 2.411 0.4371 0.4447 0.3442
HSDT, 2.699 -1.241 1.184 2.379 0.4335 0.4767* 0.3026

5 HSDT2 2.195 -1.093 1.104 1.918 0.3588 0.4317* 0.2512
HSDT, 2.525 -1.094 2.228 0.4046 0.4794# 0.3169

3
Elast. 1.153 -0.8534 1.602 0.2725 0.4697 0.1848
HSDT, 1.145 -0.8279 0.8063 1.589 0.2734 0.4873 0.1702

10 HSDT2 0.934 -0.7371 0.7464 1.290 0.2274 0.4422 0.1441
HSDT, 1.077 -0.7876 1.498 0.2581 0.4821 0.1764

Elast. 3.707 -1.668 4.672 0.6597 0.5392 0.8547
HSDT, 3.775 -1.614 0.1171 4.792 0.6465 0.5640 0.9017

5 HSDT2 3.101 -1.459 0.1094 3.922 0.5414 0.5091 0.7503
HSDT, 3.109 -1.500 4.091 0.5475 0.5946 0.7233

4
Elast. 1.851 -1.222 3.314 0.4883 0.5597 0.5567
HSDT, 1.844 -1.198 0.0820 3.302 0.4828 0.5440 0.6181

10 HSDT2 1.539 -1.094 0.0764 2.753 0.4104 0.4961 0.5244
HSDT, 1.685 -1.176 3.049 0.4478 0.5781 0.5028

Elast. 2.818 -1.301 3.132 0.4561 0.4831 0.5104
HSDT, 2.824 -1.233 1.173 3.134 0.4477 0.4908 0.4767

5 HSDT2 2.302 -1.086 1.099 2.540 0.3709 0.4454 0.3937
HSDT, 2.458 -1.154 2.784 0.3983 0.4564 0.4498

5
Elast. 1.242 -0.9436 2.044 0.3030 0.4544 0.2904
HSDT, 1.235 -0.9169 0.8952 2.030 0.3023 0.4738 0.2752

10 HSDT2 1.009 -0.8185 0.8302 1.656 0.2520 0.4309 0.2308
HSDT, 1.144 -0.9000 1.895 0.2839 0.4491 0.2679

u,_ and <1,+ are calculated at the bottoms and tops of the shells, respectively.
* -0".,0"5 are obtained from constitutive equations.
#-0".,0"5 are obtained from equilibrium equations.

IV = IOOE22 w(a/2,b/2)/phS4 I1 j = (Jj(a/2,b/2, ±h/2)/pS2

112 = (J2(a/2, b/2, Z)/pS2 (N = 3, Z = h16; N = 4, Z = h12; N = 5, Z = 3 hllO)

116 = (J6(O,O, -h/2)/pS2 114 = (J4(a/2, 0, O)/pS I1 s = (Js(O, b/2, O)/pS S = a/h.

In all the tables, Elast. is the three-dimensional elasticity theory; HSDT j is the present
shell theory; HSDT2 is Shu's shallow shell theory (1996); HSDT3 is the higher-order shell
theory (Huang, 1994); HSDT4 is Reddy's shallow shell theory. The results of Elast. and
HSDT3, HSDT4 are extracted from Huang (1994).

It is revealed in the numerical results in the tables:

(a) For deep or shallow shells, the present shell theory (HSDTa gives very accurate
solutions of deflections and in-plane stresses. But the higher-order shallow shell theory
(HSDT4) and the higher-order deep shell theory (HSDT3) yield much higher errors.
This is because HSDT3 and HSDT4 do not fulfill the continuity conditions of interlayer
transverse shear stresses. Therefore it is acceptable that an excellent theory oflaminated
plates and shells must fulfill these conditions.

(b) For deep shells, Shu's shallow shell theory (HSDT2) yields high errors. However, for
shallow shells, it gives very accurate solutions of deflection and in-plane stresses. It is
obvious that the present shell theory and Shu's shallow shell theory yield almost
agreeable results for shallow shells. Therefore we can determine the application range
of the two theories. Table 4 gives comparison between HSDT j and HSDT2 . It is shown
that when Ria> 3 (shallow shells), the shallow shell theory is suitable; when Ria ~ 3
(deep shells), the present shell theory is necessary.

(c) Continuous (J4 and (Js of the present theory are calculated directly from the constitutive
equations. But continuous (J4 and (Js of some global theories (e.g., HSDT3, HSDT4)
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Table 2. Nondimensional deflections and stresses of laminated cylindrical shallow shells (R,/a = 4)

N a/h Theory IV t't,_ t't1+ t't, x 10 it6 X 10 it5 t't. x 10

Elast. 2.118 -1.022 1.116 0.2588 0.3867 0.2729
HSDT, 2.108 -1.054 1.042 1.115 0.2565 0.4119 0.2409

5 HSDT, 2.081 -1.040 1.043 1.097 0.2535 0.4094 0.2382
HSDT. 1.944 -0.913 0.915 1.028 0.2356 0.4118# 0.2479

3
Elast. 0.9396 -0.7463 0.6468 0.1510 0.4271 0.1555
HSDT, 0.9409 -0.7452 0.7400 0.6486 0.1506 0.4427 0.1449

10 HSDT, 0.9292 -0.7369 0.7392 0.6388 0.1489 0.4399 0.1434
HSDT. 0.8712 -0.6985 0.7007 0.6037 0.1405 0.4344 0.1462

Elast. 3.042 - 1.388 3.117 0.4006 0.4924 0.7049
HSDT, 3.018 -1.422 0.1040 3.067 0.3903 0.4948 0.6790

5 HSDT, 2.981 -1.409 0.1040 3.026 0.3861 0.4902 0.6713
HSDT. 2.494 -1.301 0.0838 2.640 0.3342 0.5443 0.5995

4
Elast. 1.609 -1.137 2.045 0.2822 0.5379 0.4869
HSDT j 1.594 -1.138 0.0773 2.017 0.2780 0.5140 0.4784

10 HSDT, 1.579 -1.129 0.0772 1.996 0.2756 0.5101 0.4743
HSDT. 1.441 -1.100 0.0718 1.846 0.2573 0.5525 0.4400

Elast. 2.205 -1.040 1.763 0.2626 0.4260 0.4016
HSDT, 2.214 -1.051 1.037 1.760 0.2596 0.4257 0.3784

5 HSDT, 2.187 -1.036 1.039 1.735 0.2565 0.4022 0.3639
HSDT. 1.896 -0.964 0.967 1.547 0.2293 0.3922 0.3511

5
Elast. 1.020 -0.8340 1.047 0.1660 0.4160 0.2425
HSDT j 1.021 -0.8315 0.8262 1.044 0.1652 0.4332 0.2332

10 HSDT, 1.008 -0.8223 0.8253 1.030 0.1634 0.4306 0.2307
HSDT. 0.931 -0.8037 0.8064 0.962 0.1543 0.4068 0.2235

Table 3. Nondimensional deflections of laminated spherical deep and
shallow shells

R/a a/h Theory N=3 N=4 N=5

5 HSDT, 1.208 1.179 1.151
HSDT2 1.079 1.054 1.025

10 HSDT j 0.3761 0.3748 0.3615
HSDT2 0.3475 0.3467 0.3328

Elast. 1.482 1.434 1.376
5 HSDT j 1.482 1.433 1.379

HSDT, 1.422 1.376 1.324
HSDT3 1.420 1.228 1.217

2
Elast. 0.6087 0.6128 0.5671

10 HSDT, 0.6090 0.6085 0.5670
HSDT, 0.5877 0.5875 0.5468
HSDT3 0.5840 0.5673 0.5344

Elast. 1.549 1.495 1.417
5 HSDT, 1.546 1.488 1.425

HSDT, 1.534 1.478 1.414
HSDT. 1.461 1.240 1.228

5
Elast. 0.7325 0.7408 0.6707

10 HSDT j 0.7340 0.7345 0.6708
HSDT2 0.7287 0.7293 0.6660
HSDT. 0.6905 0.6664 0.6182
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Table 4. Comparison between the present shell theory (HSDT,) and the shallow shell theory (HSDT2)

(N = 3,8 = 5)

R.Ja 1.0 1.5 2.0 2.5 3.0 5.0 Plate

cylindrical shells (b/a = 3)
w HSDT, 2.699 2.354 2.235 2.177 2.144 2.089 2.033

HSDT2 2.194 2.150 2.125 2.108 2.096 2.072 2.033

0",_ HSDT, -1.241 - 1.142 - 1.102 -1.082 -1.069 -1.046 -1.018
HSDT2 -1.093 -1.073 -1.061 -1.053 -1.048 -1.036 -1.018

spherical shells (b/a = I)
w HSDT, 1.208 1.404 1.482 1.516 1.532 1.546 1.516

HSDT2 1.079 1.316 1.422 1.474 1.502 1.534 1.516

iT j _ HSDT j -0.4699 -0.6098 -0.6706 -0.7006 -0.7171 -0.7399 -0.7447
HSDT2 -0.4575 -0.5873 -0.6509 -0.6846 -0.7041 -0.7330 -0.7447

can be obtained only by integrating the three-dimensional equilibrium equations, other­
wise 0'4 and 0'5 calculated from the constitutive equations are not continued at layer
interfaces.

6. CONCLUSIONS

A refined theory for laminated shells with higher-order transverse shear deformation
is developed. The in-plane displacements are improved by imposing a series of conditions
and the number of displacement unknowns are reduced to five. The influence of the
materials and plyup patterns on the displacement field is included. The present theory
ensures the continuity of interlaminar transverse shear stresses and the compatibility con­
ditions on the external bounding surfaces. The equilibrium equations and boundary con­
ditions are proposed. The closed-form solutions for simply-supported cross-ply shells are
presented. The numerical examples show that present theory can predict very accurate
results for both deep and shallow shells. Moreover, as the number of the displacement
unknowns is only five, the present theory is relatively simple and can be conveniently
applied to numerical analysis methods (e.g., FEM).

REFERENCES

Dennis, S. T. and Palazotto, A. N. (1991). Laminated shell in cylindrical bending, two-dimensional approach vs
exact. AIAA J. 29,647-650.

Di Sciuva, M. (1987). An improved shear-deformation theory for moderately thick multilayered anisotropic shells
and plates. J. Appl. Mech. 54, 589-596.

Dong, S. B. and Tso, F. K. W. (1972). On a laminated orthotropic shell theory including transverse shear
deformation. J. Appl. Mech. 39,1091-1096.

He, L. H. (1994). A linear theory of laminated shells accounting for continuity of displacements and transverse
shear stresses at layer interfaces. Int. J. Solids Struct. 31, 613-627.

Huang, N. N. (1994). Influence of shear correction factors in the higher-order shear deformation laminated shell
theory. Int. J. Solids Struct. 31, 1263-1227.

Jing, H. S. and Tzeng, K. G. (1993). Refined shear deformation theory of laminated shells. AIAA J. 31, 765-773.
Librescu, L., Khdeir, A. A. and Frederick, D. (1989). A shear deformation theory oflaminated composite shallow

shell-type panel and their response analysis I: free vibration and buckling. Acta. Mech. 76, 1-33.
Noor, A. K. and Peters, J. M. (1990). A posteriori estimates for shear correction factors in multi-layered composite

cylinders. J. Engng Mech. 115, 1225-1244.
Reddy, J. N. and Liu, C. F. (1985). A higher-order shear deformation theory of laminated elastic shells. Int. J.

Engng Sci. 23, 319-330.
Shu, X. P. and Sun, L. X. (l994a). An improved simple higher-order theory for laminated composite plates.

Computers and Struct. SO, 231-236.
Shu, X. P. and Sun, L. X. (1994b). Thermomechanical buckling of laminated composite plates with higher-order

transverse shear deformation. Computers and Struct. 53, 1-7.
Shu, X. P. (1996). An improved simple higher-order theory for laminated composite shells. Computers and Struct.

(to be published).
Soldatos, K. P. and Timarci, T. (1993). Unified formulation of laminated composite, shear deformation, five­

degrees-of-freedom cylindrical shell theory. Compo Struct. 25,165-171.
Touratier, M. (1992). A refined theory of laminated shallow shells. Int. J. Solids Struct. 29,1401-1415.
Whitney, J. M. and Sun, C. T. (1947). A refined theory for laminated anisotropic cylindrical shells. J. Appl. Mech.

41,471-476.



Theory of laminated shells

APPENDIX

Coefficients of matrix [K,J are defined as follows:

K'I = (A, I +2BII /R I+DldRDrx2+(A 3J +2BJ2!R, +DnlR~)P2+CI/R~

KI2 = (A'2 +A3J +B21 /RI +BJ2!R I+BI4 /R2+B33 /R2+D I4 /R IR2+D23 /R, R2)rxP

K I3 = -(BII +D II /R I)rx 3
- (B14 +B32 + BJ3 +D I4 /R I + D22 /R I+D23 /R I)rxp2

-(AII/RI+A I2 /R2+BII/R~ +Btl /R IR2+ CII/Rdrx

K14 = (FII +EII/R,)rx2+(FJ2+E22/RI)P2_C,I/RI

KI5 = (FI4+FJ3+E'4/RI +E23 /R I)rxP

K22 = (A J3 +2B33 /R2+D3J /RDrx2+ (A 22 +2B24 /R2+ D44 /RDp2 + CnlR~

K23 = - (B24 +D44 /R2)P3 -(B21 +B32 +B33 +D14 /R2+D2J /R2+Dn/R2)rx2P

- (A ulR I + AnlR2+ B I4 /R IR2+B24/R~ + C22 /R2)P

K24 = (F21 +FJ2+E32/R2+E41/R2)rxP

K25 = (F3J + E33 /R2)rx2+ (F24 + E44 /R2)P2 - C22 /R2

K JJ = D II rx4+ (D 22 +DJ3 +2D14 +2D23 )rx2p2 +D44 P4 + (2BI,/RI +2B21 /R2+ CII )rx2

+(2BI4 /R I+2B24 /R2+C22 )P2 +AII/R~ +2AulR IR2+AnlR~

K 34 = -EI,rx3-(E22+EJ2+E4drxP2-(F'I/R,+F2I/R2-CII)rx

K 3S = - (E14 +E23 +E33 )rx2P-E44 pJ - (FI4 /R I+ F24 /R2- C22 ){J

K44 = G'lrx2+G22 P2+C'1

K4S = (G I4 +G23 )rxP

K 5S = GJ3rx2+G44P2+C22'

683


